Bilgisayar Mühendisliği | |||||
Lisans | TYYÇ: 6. Düzey | QF-EHEA: 1. Düzey | EQF-LLL: 6. Düzey |
Ders Kodu: | MAT102 | ||||||||
Ders İsmi: | Matematik II | ||||||||
Ders Yarıyılı: | Bahar | ||||||||
Ders Kredileri: |
|
||||||||
Öğretim Dili: | TR | ||||||||
Ders Koşulu: | |||||||||
Ders İş Deneyimini Gerektiriyor mu?: | Hayır | ||||||||
Dersin Türü: | Zorunlu | ||||||||
Dersin Seviyesi: |
|
||||||||
Dersin Veriliş Şekli: | Yüz yüze | ||||||||
Dersin Koordinatörü: | Ar.Gör. Zehra AKSOY | ||||||||
Dersi Veren(ler): |
|
||||||||
Dersin Yardımcıları: |
Dersin Amacı: | Dizi ve seri konusunda öğrenciyi detaylı olarak bilgilendirmek ve çok değişkenli fonksiyonlarda limit, süreklilik, kısmi türev, iki katlı integral kavramlarını kullanma becerisi sağlamak. |
Dersin İçeriği: | Sonsuz Diziler: Yakınsama ve Iraksama, Dizilerin Yakınsaklık ve Iraksaklığı, Dizilerin Limitlerinin Hesaplanması, Diziler İçin Sandviç (Sıkıştırma) Teoremi, Dizilerde Sürekli Fonksiyon Teoremi, Sıkça Rastlanan Limitler, Tekrarlı Tanımlanan Diziler, Sınırlı Monoton Diziler, Monoton Dizi Teoremi.Sonsuz Seriler: Geometrik Seriler, Iraksak Seriler İçin n. Terim Testi, Serileri Birleştirmek, Terim Eklemek veya Terim Silmek,Pozitif Terimli Seriler için Yakınsaklık Testleri: İntegral Testi, p Serisi, Harmonik Seri, Karşılaştırma Testi, Limit Karşılaştırma Testi, Oran Testi, Kök Testi.Alterne Seriler: Alterne Harmonik Seri, Alterne Seri Testi (Leibniz Testi), Mutlak ve Şartlı Yakınsaklık. Kuvvet Serileri: Bir Kuvvet Serisinin Yakınsaklık Yarıçapı, Kuvvet Serilerinde İşlemler, Kuvvet Serileri için Seri Çarpım Teoremi, Terim Terime Türev Teoremi, Terim Terime İntegrasyon Teoremi, Taylor ve Maclaurin Serileri, n. Mertebeden Taylor Polinomu.Taylor Serisinin Uygulamaları: Elemanter Olmayan İntegrallerin Hesaplanması, Arktanjantlar, Belirsizlik Durumundaki Limitleri Hesaplamak. Parametrik Denklemler ve Kutupsal Koordinatlar: Düzlemsel Eğrilerin Parametrize Edilmesi, Parametrik Denklemler, Parametrik Eğriler ile Hesaplama: Türev, Parametrik Olarak Tanımlı Eğrinin Uzunluğu.Kutupsal Koordinatlar: Kutupsal Denklemler, Kutupsal ve Kartezyen Koordinatlar Arasındaki İlişki, Kutupsal Koordinatlarla Grafik Çizimi (Doğru, Çember ve Kardiyoid), Kutupsal Koordinatlarda Alanlar ve Uzunluklar, Düzlemde Alan, Kutupsal Eğrinin Uzunluğu.Vektörler: Üç Boyutlu Koordinat Sistemleri, Vektörler, Nokta Çarpım, İki Vektör Arasındaki Açı, Dik Vektörler, Vektörel Çarpım, Paralel Vektörler, Uzayda Doğrular ve Düzlemler: Uzayda Doğrular ve Doğru Parçaları, Bir Doğrunun Vektörel Denklemi, Bir Doğrunun Parametrik Denklemleri, Uzaydaki Bir Düzlem İçin Denklem, Kesişim Doğruları.Vektör Değerli Fonksiyonlar:Uzayda Eğriler ve Teğetleri, Limit ve Süreklilik, Türevler, Hız Vektörü, İvme Vektörü,Türev Kuralları, Bir Uzay Eğrisi Boyunca Yay Uzunluğu.Çok Değişkenli Fonksiyonlar: Tanım ve Değer Kümeleri, İki Değişkenli Fonksiyonlar, İki Değişkenli Fonksiyonların Grafikleri ve Seviye Eğrileri ,Üç Değişkenli Fonksiyonlar, Seviye Yüzeyleri (düzlem, küre, elipsoid, eliptik paraboloid, silindir, koni), İki Değişkenli Fonksiyonlarda Limit, Süreklilik, Limitin Yokluğu İçin Çift Yol Testi, Bileşke Fonksiyonların Sürekliliği, İkiden Fazla Değişkenli Fonksiyonlar.Kısmi Türevler: İki Değişkenli Fonksiyonların Kısmi Türevleri, Kısmi Türev ve Süreklilik, İkinci Mertebeden Kısmi Türevler, Karışık Türev Teoremi, Daha Yüksek Mertebeden Kısmi Türevler, Diferansiyellenebilme, Zincir Kuralı: İki Değişkenli Fonksiyonlar, İki Bağımsız Değişken İçeren Fonksiyonlar İçin Zincir Kuralı, Üç Değişkenli Fonksiyonlar, Üç Bağımsız Değişkenli Fonksiyonlar için Zincir Kuralı, İki Bağımsız Değişken ve Üç Ara Değişken İçin Zincir Kuralı. Kapalı Türeve Yeniden Bakış. Yönlü Türevler ve Gradyent Vektör: Düzlemde Yönlü Türevler, Yönlü Türevin Yorumu, Hesaplama ve Gradyentler, Seviye Eğrilerinin Teğetleri ve Gradyentler, Üç Değişkenli Fonksiyonlar. Teğet Düzlemler ve Diferansiyeller: Bir Yüzeyin Teğet Düzlemi , Bir Yüzeyin Normal Doğrusu.İki Değişkenli Bir Fonksiyonu Lineerleştirmek, Diferansiyeller, Ekstremum Değerler:Yerel Ekstremum Değerler, Yerel Ekstermum Değerler için Gerekli Şartlar, Kritik ve Eyer Noktalar, Yerel Ekstremum Değerler İçin İkinci Türev Testi. Katlı İntegraller: Dikdörtgenler Üzerinde İki Katlı İntegraller, Hacim olarak İki Katlı İntegraller, İki Katlı İntegrallerin Hesaplanması: Fubini Teoremi(Birinci Şekli), Genel Bölgeler Üzerinde İki Katlı İntegraller, Dikdörtgen olmayan Sınırlı Bölgeler Üzerinde İki Katlı İntegraller, Hacimler (iki yüzey arasındaki hacim), Fubini Teoremi (Daha Kapsamlı Şekil).İntegrasyonun sınırlarını Bulmak: Dik Kesitleri Kullanmak, Yatay Kesitleri Kullanmak, İki Katlı İntegrallerin Özellikleri, İki Katlı İntegrallerde Alan Hesabı, Ortalama Değer Teoremi. Kutupsal Formda İki Katlı İntegraller: İntegrasyon sınırlarını bulmak, Kartezyen İntegralleri Kutupsal İntagrallere Dönüştürmek. Kutupsal koordinatların kullanımı ile hacim hesabı (iki yüzey arasındaki hacim),İki Katlı İntegrallerde Değişken Dönüşümü |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
Hafta | Konu | Ön Hazırlık |
1) | Sonsuz Diziler: Yakınsama ve Iraksama, Dizilerin Yakınsaklık ve Iraksaklığı, Dizilerin Limitlerinin Hesaplanması, Diziler İçin Sandviç (Sıkıştırma) Teoremi, Dizilerde Sürekli Fonksiyon Teoremi, Sıkça Rastlanan Limitler, Tekrarlı Tanımlanan Diziler, Sınırlı Monoton Diziler, Monoton Dizi Teoremi. | |
2) | Sonsuz Seriler: Geometrik Seriler, Iraksak Seriler İçin n. Terim Testi, Serileri Birleştirmek, Terim Eklemek veya Terim Silmek,Pozitif Terimli Seriler için Yakınsaklık Testleri: İntegral Testi, p Serisi, Harmonik Seri, Karşılaştırma Testi, Limit Karşılaştırma Testi, Oran Testi, Kök Testi. | |
3) | Alterne Seriler: Alterne Harmonik Seri, Alterne Seri Testi (Leibniz Testi), Mutlak ve Şartlı Yakınsaklık. Kuvvet Serileri: Bir Kuvvet Serisinin Yakınsaklık Yarıçapı, Kuvvet Serilerinde İşlemler, Kuvvet Serileri için Seri Çarpım Teoremi, Terim Terime Türev Teoremi, Terim Terime İntegrasyon Teoremi, Taylor ve Maclaurin Serileri, n. Mertebeden Taylor Polinomu. | |
4) | Taylor Serisinin Uygulamaları: Elemanter Olmayan İntegrallerin Hesaplanması, Arktanjantlar, Belirsizlik Durumundaki Limitleri Hesaplamak. Parametrik Denklemler ve Kutupsal Koordinatlar: Düzlemsel Eğrilerin Parametrize Edilmesi, Parametrik Denklemler, Parametrik Eğriler ile Hesaplama: Türev, Parametrik Olarak Tanımlı Eğrinin Uzunluğu. | |
5) | Kutupsal Koordinatlar: Kutupsal Denklemler, Kutupsal ve Kartezyen Koordinatlar Arasındaki İlişki, Kutupsal Koordinatlarla Grafik Çizimi (Doğru, Çember ve Kardiyoid), Kutupsal Koordinatlarda Alanlar ve Uzunluklar, Düzlemde Alan, Kutupsal Eğrinin Uzunluğu. | |
6) | Vektörler: Üç Boyutlu Koordinat Sistemleri, Vektörler, Nokta Çarpım, İki Vektör Arasındaki Açı, Dik Vektörler, Vektörel Çarpım, Paralel Vektörler, Uzayda Doğrular ve Düzlemler: Uzayda Doğrular ve Doğru Parçaları, Bir Doğrunun Vektörel Denklemi, Bir Doğrunun Parametrik Denklemleri, Uzaydaki Bir Düzlem İçin Denklem, Kesişim Doğruları.Vektör Değerli Fonksiyonlar:Uzayda Eğriler ve Teğetleri, Limit ve Süreklilik, Türevler, Hız Vektörü, İvme Vektörü, Türev Kuralları, Bir Uzay Eğrisi Boyunca Yay Uzunluğu | |
7) | Ara sınav | |
8) | Çok Değişkenli Fonksiyonlar: Tanım ve Değer Kümeleri, İki Değişkenli Fonksiyonlar, İki Değişkenli Fonksiyonların Grafikleri ve Seviye Eğrileri ,Üç Değişkenli Fonksiyonlar, Seviye Yüzeyleri (düzlem, küre, elipsoid, eliptik paraboloid, silindir, koni), İki Değişkenli Fonksiyonlarda Limit, Süreklilik, Limitin Yokluğu İçin Çift Yol Testi, Bileşke Fonksiyonların Sürekliliği, İkiden Fazla Değişkenli Fonksiyonlar. | |
9) | Kısmi Türevler: İki Değişkenli Fonksiyonların Kısmi Türevleri,Kısmi Türev ve Süreklilik, İkinci Mertebeden Kısmi Türevler,Karışık TürevTeoremi,Daha Yüksek Mertebeden Kısmi Türevler, Diferansiyellenebilme, Zincir Kuralı: İki Değişkenli Fonksiyonlar, İki Bağımsız Değişken İçeren Fonksiyonlar İçin Zincir Kuralı, Üç Değişkenli Fonksiyonlar, Üç Bağımsız Değişkenli Fonksiyonlar için Zincir Kuralı, Yüzeylerde Tanımlanmış Fonksiyonlar, İki Bağımsız Değişken ve Üç Ara Değişken İçin Zincir Kuralı | |
10) | Kapalı Türeve Yeniden Bakış. Yönlü Türevler ve Gradyent Vektör: Düzlemde Yönlü Türevler, Yönlü Türevin Yorumu, Hesaplama ve Gradyentler, Seviye Eğrilerinin Teğetleri ve Gradyentler, Üç Değişkenli Fonksiyonlar. Teğet Düzlemler ve Diferansiyeller: Bir Yüzeyin Teğet Düzlemi, Bir Yüzeyin Normal Doğrusu. | |
11) | İki Değişkenli Bir Fonksiyonu Lineerleştirmek, Diferansiyeller, Ekstremum Değerler:Yerel Ekstremum Değerler, Yerel Ekstermum Değerler için Gerekli Şartlar, Kritik ve Eyer Noktalar, Yerel Ekstremum Değerler İçin İkinci Türev Testi | |
12) | Katlı İntegraller: Dikdörtgenler Üzerinde İki Katlı İntegraller, Hacim olarak İki Katlı İntegraller, İki Katlı İntegrallerin Hesaplanması: Fubini Teoremi(Birinci Şekli), Genel Bölgeler Üzerinde İki Katlı İntegraller, Dikdörtgen olmayan Sınırlı Bölgeler Üzerinde İki Katlı İntegraller, Hacimler (iki yüzey arasındaki hacim), Fubini Teoremi (Daha Kapsamlı Şekil) | |
13) | İntegrasyonun sınırlarını Bulmak: Dik Kesitleri Kullanmak, Yatay Kesitleri Kullanmak, İki Katlı İntegrallerin Özellikleri, İki Katlı İntegrallerde Alan Hesabı, Ortalama Değer Teoremi. | |
14) | Final |
Ders Notları / Kitaplar: | |
Diğer Kaynaklar: | 1. Thomas Kalkülüs (cilt 1-2) ,George B. Thomas ,Maurica D. Weir Joel R. Hass , Çeviri Editörü Mustafa Bayram , 2011, Ankara . |
Ders Öğrenme Kazanımları | 1 |
2 |
4 |
5 |
3 |
---|---|---|---|---|---|
Program Kazanımları |
Etkisi Yok | 1 En Düşük | 2 Düşük | 3 Orta | 4 Yüksek | 5 En Yüksek |
Dersin Program Kazanımlarına Etkisi | Katkı Payı |
Ders |
Yazılı Sınav (Açık uçlu sorular, çoktan seçmeli, doğru yanlış, eşleştirme, boşluk doldurma, sıralama) |
Yarıyıl İçi Çalışmaları | Aktivite Sayısı | Katkı Payı |
Ara Sınavlar | 1 | % 40 |
Final | 1 | % 60 |
Toplam | % 100 | |
YARIYIL İÇİ ÇALIŞMALARININ BAŞARI NOTU KATKISI | % 40 | |
YARIYIL SONU ÇALIŞMALARININ BAŞARI NOTUNA KATKISI | % 60 | |
Toplam | % 100 |
Aktiviteler | Aktivite Sayısı | Süre (Saat) | İş Yükü |
Ders Saati | 12 | 4 | 48 |
Sınıf Dışı Ders Çalışması | 24 | 6 | 144 |
Ara Sınavlar | 1 | 3 | 3 |
Final | 1 | 3 | 3 |
Toplam İş Yükü | 198 |